
Logic RQ — Basic One
Mnemonic Character Map

n n: not Negation
~ ~: similar Negation (glyph variant of n)
a a: and Conjunction
o o: or Disjunction, adjunction

i i: implies Implication, subjunction, conditional
r r: replies Replication
e e: equal Equivalence, bijunction, biconditional
x x: exclusive xor , contravalence, disjunction
u u: up nand , exclusion, negat-ad/disjunction
| |: just a bar nand , Sheffer bar (glyph variant of u)
v v: like a v nor , Peirce arrow, negat-conjunction

â â: not-a nand (glyph variant of u)
ô ô: not-o nor (glyph variant of v)
ã ã: ~ + a Undefined (included for completeness)
õ õ: ~ + o xor (glyph variant of x)
I I or î: not-i Negat-implication
R R: shift-i Negat-replication
ê ê: not-e Negat-equivalence (glyph variant of x)

á á: accent-a Conjunction with dot (usage varies)
ó ó: accent-o Dis/adjunction with dot (usage varies)
í í: accent-i Implication with dot (usage varies)
® ®: from r Replication with dot (usage varies)
é é: accent-e Equivalence with dot (usage varies)

ä ä: dbldot a Repeated conjunction
ö ö: dbldot o Repeated dis/adjunction
å å: a with o Repeated con- or dis/adjunction resp.

z z: arbitrary Right arrow from bar (usage varies)
y y: before z Left arrow from bar (usage varies)
h h: arbitrary Double right arrow (usage varies)
g g: before h Double left arrow (usage varies)
d d: before e Double left right arrow (usage varies)
H H: shift-h Double right arrow with stroke
G G: shift-g Double left arrow with stroke
D D: shift-d Double left right arrow with stroke

A A: for all For all quantifier
E E: exists There exists quantifier
Ê Ê: not-E Negated there exists quantifier
U U: unify Unificator

N N: necessary It is necessary; sometimes: end of proof
P P: possible It is possible
O O: like a O Undefined (included for completeness)
l l: lambda Lambda operator
j j: like iota Turned iota operator

s s: sequence Proves, yields; reducible; sequence
k k: ‘k’on-seq. Does not yield — or — proofs/yields

right-to-left; sequence to the left
æ Æ: ligature Equal, mutually reducible
S S: shift-s Does not yield; not reducible
K K: shift-k Does not proof/yield right-to-left
c c: consequence True, tautology, satisfies, results in
b b: before c True, tautology etc. right-to-left
Æ Æ: upcase æ Equal, mutually satisfying etc.
C C: shift-c Not true, no tautology etc.
B B: shift-b Not true, no tautology right-to-left
m m: arbitrary Therefore (old-style)
M M: upcase m Because (old-style)

t t: true True (value) — English
w w: wahr Wahr (value) — German
f f: false, falsch False, falsch (value)
T T: shift-t True, verum (operator)
F F: shift-f False, falsum (operator)
V V: like a V Correct (proofreader’s sign)
X X: like a X Error (proofreader’s sign)

p q p q: usage Phi and psi (formula variables)
J L J L: similar Interpretation; formal language
¤ €: similar Element of
Ø Ø: similar Empty set

= =: normal Equal (general)
≠ ≠: normal Not equal
≈ ≈: normal Similar etc.
÷ ÷: similar Tilde with double dot (special usage)
#: well, … Identical
$ $: near to # Special mutually reducible etc.
¢ ¢: like $ Special mutually reducible etc.

()[]{} like usual Parens like in ordinary fonts
<> < >: similar Angle brackets
≤≥ ≤ ≥: paren-like Corner brackets

Z Z: last letter End of poof
Y Y: before Z End of proof (glyph variant)

The punctation glyphs use more or less their ordinary shapes
(.,:; ¿?¡! ‘’“” ›‹»« … -–— • * etc). The figures offer index
numbers: 0123456789 , to which one may add µ (at µ), ñ (at ñ) and ı
(at ı) as well as % (at %) for use with =% and ' prime and "sec-
ond (at ' and "). And there is some minor stuff placed ad free
character places here and there. Roman Eisele

Version: 2003-03-27 • See http://www.roman-eisele.de/typo/

http://www.roman-eisele.de/typo/

